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Climate Variability and Internal Migration to Urban and Rural 

Areas: Evidence from Global Microdata* 

 

Brian C. Thiede† 

Abstract 

Climate change is expected to have significant impacts on human population dynamics around 
the world, including on migration systems. The empirical evidence on climate-induced migration 
has expanded rapidly over the past decade, and it demonstrates significant but complex 
associations between temperature and precipitation variability and migration. Such 
environmental changes lead to shifts in migration behavior, but the direction and magnitude of 
such effects varies by context and across different sub-populations. The literature also remains 
characterized by important limitations, including a lack of generalizable evidence about whether 
and how climatic changes influence migration between rural and urban areas. Climatic changes 
are often believed to have disproportionate effects on rural-urban migration, but this assumption 
has been rarely tested empirically. This paper addresses this gap by measuring the effects of 
temperature and precipitation variability on inter-province migration to rural and urban areas in 
the developing world and developing statistical profiles of climate-affected migrants to urban 
areas. Drawing on integrated census and survey microdata from 23 countries, combined with 
high-resolution climate records, a series of multinomial logistic regression models are fit to 
measure the effects of climate exposures on internal migration to urban destinations and to test 
for heterogeneity in these effects across social and demographic groups. Subsequent analyses 
identify a population of climate-affected migrants in cities and develop statistical profiles of this 
group and comparison populations. Results show that climate exposures affect migration to 
urban but not rural provinces, with precipitation deficits strongly reducing the odds of urban-
bound moves. Precipitation effects do not vary in a meaningful manner across many social and 
demographic groups or between rural and urban origins, but both temperature and precipitation 
effects vary significantly by world region. Statistical profiles of climate-affected migrants to cities 
suggest this population is remarkably similar to other streams of urban-bound migrants. The 
results should reduce concerns that climate change will disproportionately push the most 
disadvantaged populations to cities.  
 

___________________________ 
*The research presented in this paper was funded by KNOMAD’s Thematic Working Group (TWG) on 
Environmental Change and Migration which is chaired by Alex Aleinikoff, Director, Zolberg Institute on Migration 
and Mobility, The New School, and co-chaired by Kanta Kumari Rigaud, Lead Economist, World Bank. The focal 
point for the TWG is Sonia Plaza, Senior Economist, World Bank. The paper was prepared under the guidance of 
Dilip Ratha, Head of KNOMAD. 
 
†The author can be contacted at: 112C Armsby Building; The Pennsylvania State University; University Park, PA 
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Introduction 

 

Climate variability and change are expected to have extensive social and economic costs, and to 
include many impacts on human population dynamics (Carleton & Hsiang 2016).1 The possibility 
that climatic changes will alter human migration patterns has received widespread attention by 
academics, policymakers, and the public (Hoffman et al. 2020; Rigaud et al. 2018; The White 
House 2021), driven in part by concerns about climate-induced displacement and so-called 
climate refugees. However, the existing evidence supports a much more nuanced and 
complicated picture. Climate variability—and its downstream social and economic impacts—has 
the potential to both increase and decrease migration (i.e., displacing and trapping populations), 
with effects varying across sub-populations and types of migration (Black et al 2011; Boas et al. 
2019; Fussell et al. 2014; Gemenne 2011). 
 

Migratory responses to climate exposures can have important implications for wellbeing 
at the individual and household levels since mobility is often part of diverse livelihood strategies 
(Black et al. 2011a; Ellis 1998). Climate-related changes in migration may potentially also have 
broader impacts on the communities that receive migrants or remain home to trapped 
populations, including for local labor markets and socio-political stability (Koubi 2019). These 
impacts may be especially pronounced (or at least distinctive) for migration to urban areas, which 
in some parts of the world are characterized by high levels of unemployment, large informal 
settlements, and socio-political instability (Fink et al. 2014; Østby 2016). These conditions—and 
a common assumption that climate variability will drive rural-to-urban migration—fuel concern 
that climate-affected migrants to cities will fail to integrate and thereby contribute to social and 
economic challenges in those locations. Despite these claims, however, there is only limited 
evidence about the number and characteristics of climate-induced migrants to urban areas (for 
exceptions see Nawrotzki et al. 2017; Sedova & Kalkuhl 2020; Thiede et al. 2016; Weinreb et al. 
2020).2  
 

This paper helps to address that gap, and limitations to existing evidence, by measuring 
the effects of climate exposures on internal migration to urban and rural areas across 23 
countries in the developing world. Drawing on over 142 million individual records from 

 
1This study measures the effects of climate variability on human migration. As operationalized here, climate 

variability captures short-term deviations in temperature and precipitation from the respective long-term means in 
a particular location (e.g., how temperatures during a 5-year period deviate from a longer-term mean in a given 
location). The term “climate exposures” is also used to refer to individuals’ exposure to climate variability throughout 
the text. The concept of climate variability is distinct from climate change, which represents a long-term change in 
the temperature and precipitation distributions for a particular location. This study follows current standards in the 
population-environment literature by using observed responses to climate variability to develop expectations about 
likely responses to future climate change, which is an imperfect but arguably best-available approach. 
2 More broadly, it is also important to note that many common claims about the impacts of migration to urban areas 

are overstated and (or) qualitatively incorrect. For example, contrary to the assumption that rural-urban migration 
is the main driver of urbanization globally, recent studies show that these contributions vary historically and spatially. 
In many places today, natural increase constitutes the main driver of urbanization (Bocquier et al. 2023; Menashe-
Oren & Bocquier 2021). 
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harmonized microdata and high-resolution temperature and precipitation records, this study 
measures climate effects on migration to urban areas, draws comparisons with effects on 
migration to rural areas, and evaluates whether and how these effects vary across sub-
populations and between different types of urban destinations. Statistical profiles of climate-
affected migrants in urban destinations and relevant comparison groups are then generated to 
understand, descriptively, how this population differs from other groups of migrants and non-
migrants.  

 
To preview, the results support three headline findings. First, climate exposures affect 

migration to urban provinces but not rural provinces. In particular, precipitation deficits strongly 
reduce the odds of migration to urban areas. Second, climate effects are fairly consistent across 
many sub-populations, but vary significantly across world regions. Third, statistical profiles of 
climate-affected migrants in cities suggest this population is in many ways similar to other urban-
bound migrants, reducing concerns that climate-induced migration streams will be negatively 
selected. 

 
With these goals and overall findings in mind, the paper proceeds as follows. The next 

section describes the conceptual basis for expecting climate-induced changes in migration—with 
an emphasis on moves to urban areas—and outlines key findings from the existing literature. The 
third section describes the data, measures, and statistical methods used in the analysis. The 
fourth section presents the results, and the fifth section concludes with a discussion of key 
findings, their implications for policymakers and practitioners, and issues for future research to 
address. 
 

Climate and migration to urban and rural areas 
 
Climate exposures can have significant impacts on social and environmental systems, which can 
in turn shape individuals’ incentives and abilities to migrate. These climate-induced changes in 
migration can operate through at least five mechanisms3: displacement dynamics, economic 
incentives, migrant health, residential preferences, and social networks (Black et al. 2011b; 
Hunter et al. 2015; Hunter & Simon 2022). Importantly, given the selective nature of migration 
(Bernard & Bell 2018; Bertoli et al. 2013; Lu 2010) and differences in vulnerability to climate 
exposures (Otto et al. 2017), these mechanisms are unlikely to operate consistently within and 
between contexts; and, as outlined below, these processes may have different implications for 
climate-migration dynamics in urban and rural areas. 
  
 First, climate impacts on migration may occur directly through physical displacement. 
Temperature and precipitation variability may be correlated with the occurrence of natural 
disasters (e.g., cyclones, floods, wildfires) that destroy or degrade housing and other property, 

 
3 The identification of these hypothesized mechanisms is based largely on the broader migration literature, which 

has identified correlates of migration that can be plausibly linked to climate variability. However, few studies in the 
climate-migration literature have systematically evaluated these mechanisms, representing an important limitation 
to this field (Cattaneo et al. 2019) 
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crops, and infrastructure, making it difficult or prohibitively costly to remain in affected areas (at 
least in the short run). For example, a recent global analysis revealed substantively important 
rates of flood-induced displacement in many locations, with countries such as Benin, Colombia, 
Pakistan, the Philippines, and Thailand all characterized by flood-induced displacement rates of 
more than 5 per 1000 (for the 2008-2013 study period) (Kakinuma et al. 2020). Over longer 
periods of time, climatic changes may also displace populations as sea-level rise inundates 
settlements, water and land resources are degraded (e.g., due to salinization), and temperatures 
rise to dangerous levels (Chen & Mueller 2018; Hauer et al. 2020; Raymond et al. 2020). 
 
 Second, the effects of climate variability on economic activity may change individuals’ 
incentives for migration and the resources needed to fund moves (Carleton & Hsiang 2016; Dell 
et al. 2012). For example, temperature and precipitation are important determinants of 
agricultural production (Lobell et al. 2011; Ortiz-Bobea 2021; Ray et al. 2015), which can affect 
economic welfare and incentives for migration via changes in income and food prices. Consistent 
with this expectation, evidence from Tanzania shows that weather-induced reductions in 
agricultural income increase the probability of out-migration in the next year (Kubik & Maurel 
2016). Beyond the agricultural sector, climate variability can also affect economic conditions 
through effects on labor productivity (e.g., heat stressors reducing productivity; Graff Zivin & 
Neidell 2014) and through impacts on macroeconomic performance (e.g., natural disasters 
reducing economic growth; Klomp & Valckx 2014). Households may respond to such changes by 
sending one or more members to less-affected locations to generate income (i.e., livelihood 
diversification). Conversely, households who face large climate-related resource constraints may 
retain individuals who would have otherwise migrated and thereby reduce out-migration 
(sometimes referred to as a trapped population dynamic) (DeWaard et al. 2022; Kaczan & Orgill-
Meyer 2020).4 
  

Third, climate exposures can affect human health, which is often an important correlate 
of migration. Indeed, in some contexts, migrants are positively selected on health, which reflects 
the physical and psychological demands that migration (especially longer-distance migration) 
entails (Crimmins et al. 2007; Riosmena et al. 2017). Changes in temperature and precipitation 
have diverse health impacts. For example, exposure to high temperatures is associated with 
increased rates of malnutrition and worse psychological wellbeing among affected adults 
(Mueller & Gray 2018; Palinkas & Wong 2020). High temperatures and low precipitation are also 
associated with worse health outcomes among children, including elevated risks of malnutrition 
and other illnesses (Blom et al. 2022; Thiede & Stube 2020; Wang et al. 2022). To the extent that 
such health impacts occur among potential migrants or their family members, their poor health 
or increased caregiving responsibilities may reduce the likelihood of out-migration. 

 

 
4 The concept of a trapped population is consistent with the broader literature on migration, which shows that 

migration tends to be low among the poor and increase as incomes grow (De Haas 2007). The implication is that 
migration is generally uncommon among the poorest households, who lack the resources to move (especially long 
distances). Of course, this proposed income-migration relationship is a general empirical regularity. There may 
certainly be circumstances in which poor and vulnerable populations may experience climate-related displacement. 



8 
 

Fourth, changes in temperature and precipitation, as well as correlated changes in other 
aspects of the natural environment (e.g., bodies of water, glaciers, forests) can affect migration 
by increasing or decreasing the match between environmental conditions or amenities and 
individuals’ residential preferences or satisfaction (Hunter 2005). The local environment is one 
of many factors that influence decisions about where to live or relocate to (McLeman & Gemenne 
2018).5 For example, temperature, precipitation, and humidity levels are associated with 
patterns of inter-province migration among skilled individuals in China (Liu & Shen 2013). Holding 
other factors constant, environmental changes may affect migration decisions as individuals 
move (forgo moves) to find (remain in) a location with environmental conditions that match their 
preferences. It is important to note that aspects of residential preferences (e.g., place 
satisfaction) may also moderate how environmental changes influence migration (Adams & 
Adger 2013). For example, place attachment among residents in the Peruvian highlands (which 
is associated with environmental and non-environmental factors) reduces their likelihood of out-
migration even in the face of significant climate shocks (Adams 2016). 

 
Fifth, to the extent that climate variability changes migration patterns through the four 

mechanisms described above, it may also have second-order effects via migration networks. A 
non-trivial share of individuals who migrate do so in response to the mobility decisions of others 
(Massey et al. 1993). For example, if an individual moves to seek new employment opportunities, 
their spouse, children, and (or) members of their social network may subsequently migrate as 
well (e.g., for family reunification, to seek their own employment opportunities) (Fussell 2010; 
Garip 2012). Likewise, a decision by a potential migrant to remain in place reduces the likelihood 
that family members and other individuals in their social network migrate via the same network 
effects. The implication is that climate-induced changes in migration will subsequently change 
the migration probabilities of other individuals in their social networks. It is important to note, 
however, that such social network effects often unfold over long periods of time and may 
therefore not be detected in the immediate aftermath of a given environmental change. 
  

While the hypothesized mechanisms linking climate exposures and migration are relevant 
for many populations and types of moves, the salience of each may vary. Populations around the 
world vary significantly in their vulnerability to environmental changes given large 
socioeconomic, demographic, and ecological inequalities (Adger 2006; Otto et al. 2017). In the 
context of climate-related migration, such differences in climate vulnerability may interact with 
more generalized patterns of migrant selectivity (i.e., when the migrant population is 
systematically different than then non-migrant population). Vulnerability and selection often 
occur along similar lines, including class, gender, and location (Bernard & Bell 2018; Bertoli et al. 
2013; Black et al. 2011a; DeWaard et al. 2022; Thiede et al. 2016). Yet it is difficult to predict how 
they may interact. For example, assume that migrants are typically better educated than non-
migrant peers in their place of origin, and that less-educated individuals are more vulnerable to 
the effects of climate shocks than their better-educated peers. If vulnerability is correlated with 
the likelihood of being displaced (i.e., out-migration) by a climate shock, this process will offset 
the baseline selection dynamics (i.e., reduce the educational disparities in migration). However, 

 
5 The relative importance of residential preferences may vary across contexts and between groups (Hunter 2005).  
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such vulnerability may also ‘trap’ less-educated individuals in place by further reducing the 
resources that are needed to migrate. In the latter scenario the baseline selection process would 
be amplified (i.e., educational disparities would grow). Similar, difficult-to-predict dynamics may 
play out with respect to other dimensions of vulnerability and selection, such as gender, as well.  

 
Climate exposures may also have heterogeneous effects across different types of moves. 

For example, climate-induced resource constraints (e.g., due to reductions in income) may 
reduce international migration given the relatively high costs of such moves (Riosmena et al. 
2018; Sedova & Kalkuhl 2020), while having a weaker or positive effect on internal migration 
(Mueller et al. 2014).6 Importantly for this analysis, the salience of these mechanisms may also 
vary across the rural-urban continuum (e.g., between rural and urban origins and destinations)—
the focus of this paper. Here, at least three considerations are worth underlining. First, climate 
variability can have strong effects on agriculture (Lobell et al. 2011; Ortiz-Bobea 2021; Ray et al. 
2015), which disproportionately affect rural populations and incentivize diversification into non-
agricultural livelihoods that may be concentrated in urban areas (Henderson et al. 2017). This 
process may increase the sensitivity of rural-urban migration to climate exposures more than 
other forms of migration. Second, baseline levels of migration between and within rural and 
urban areas are not uniform across countries or over time. Rural-urban migration is significant in 
developing-country contexts with large rural populations (e.g., in sub-Saharan Africa) while 
urban-urban migration is more common within urbanized contexts (e.g., in Latin America) (De 
Brauw et al. 2014; Selod & Shilpi 2021). These dynamics shape the pattern of migration networks 
(and other factors associated with the costs of migration), which may in turn affect the sensitivity 
of migration flows to climate variability. Third, rural and urban areas may face unique climate-
related natural hazards, which may influence individuals’ decisions about whether and where to 
migrate. While considerable attention has been placed on the vulnerability of rural areas to 
climate shocks (e.g., via impacts on agriculture), urban areas also face many risks (e.g., flooding, 
sea-level rise, excessive heat) (Garschagen & Romero-Lankao 2015; Hauer et al. 2019; Tuholske 
et al. 2021), which may incentivize out-migration from cities and make such places less attractive 
destinations.7,8 

 
Given the multiple mechanisms that may link climate and migration, and the complex 

ways in which they operate, it is difficult to develop strong directional hypotheses about the 
effects of climate variability on migration to urban relative to rural areas. The above 
considerations nonetheless provide a strong rationale for new analyses that explicitly account for 
climate effects on migration to urban and rural areas. This rationale is also provided by a limited 
number of existing studies that have examined the effects of climate variability on migration to 
urban and (or) rural areas. For example, Sedova and Kalkuhl (2020) measure the effects of climate 

 
6 Of course, this is not always the case. Studies have also found climate-induced increases in international migration. 

In at least some of these cases, however, international moves are occurring in contexts where well-established 
migration networks reduce the costs of cross-border migration (Nawrotzki et al. 2016). 
7 Such hazards may be amplified in informal and otherwise marginal settlements that migrants are most likely to 

settle in. 
8 This study focuses solely on the effects of environmental exposures at the place of origin. Conditions in potential 

destinations are important and should be addressed in future research. 
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shocks on out-migration in rural India and find that adverse weather conditions reduce rural-rural 
and international migration but increase rates of inter-state rural-urban migration. They also 
show that favorable environmental conditions increase rural-urban migration within states. 
Nawrotzki et al. (2017) measure climate effects on migration between and within rural and urban 
areas in Mexico, revealing that exposures to precipitation deficits increase both rural-rural and 
rural-urban migration but reduce the likelihood of urban-urban moves. Thiede et al. (2016) 
examine climate and migration across eight countries in South America and find that 
temperature effects have stronger and more consistent effects on migration to urban than rural 
destinations. Finally, Mueller et al. (2020) measure climate effects on migration to rural and 
urban destinations in Kenya and find that spells of low precipitation significantly increase 
migration to urban destinations. 

 
Other studies provide more indirect insights into climate effects on migration to cities and 

rural areas by modeling either net rural migration or urbanization rates at the aggregate level. 
For example, Weinreb et al. (2020) examine climate effects on country-level net out-migration 
rates from rural (to urban) areas of sub-Saharan Africa. They find that low rainfall and high 
temperatures increase net rural out-migration among young adults. In a second example, Barrios 
et al. (2006) examine the relationship between rainfall and country-level urbanization rates 
across the developing world and find that rainfall deficits increase urbanization in sub-Saharan 
Africa (but not other regions). Finally, Henderson et al. (2017) examine the effects of drying on 
district-level urbanization in Africa, showing that dry conditions increase urbanization in regions 
where manufacturing is common in cities (i.e., in non-agriculturally-dependent regions). 
  

Analyses of urbanization and net migration provide useful insights into climate-related 
migration into cities but do not directly measure climate effects on rural-urban migration (or 
other types of moves, e.g., rural-rural migration). Urbanization rates are a function of both 
migration and natural increase (i.e., the number of births and deaths) in rural and urban areas. 
Net rural out-migration rates are simultaneously influenced by migration patterns to both rural 
and urban areas and do not differentiate between scenarios with high and low gross migration. 
While the analyses of individual-level migration outcomes discussed above overcome these 
limitations, such studies cover a limited number of contexts, are few in number, and as such 
represent only a small subset of the broader climate-migration literature.  
  

Research objectives 

 
The overall goal of this study is to understand the influence of climate variability on migration to 
urban areas across the developing world, drawing on “big microdata” collected in 23 countries 
between 1970 and 2017. Toward this end, this analysis addresses three specific objectives. The 
first objective is to measure the effects of climate variability on migration to urban areas and 
draw comparisons with migration to rural areas. The second is to evaluate whether and how 
climate effects on migration to urban (and rural) areas vary by individuals’ age, sex, educational 
attainment, and residence in rural or urban communities. Statistical models also measure 
variation in climate effects across world regions. In doing so, the analyses identify the sub-
populations and areas that are most likely to experience climate-induced changes in migration 
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to urban areas. The third objective is to identify a discrete population of what are referred to, 
here, as climate-affected migrants in urban areas, describe their social and demographic 
characteristics, and compare these characteristics to climate-affected migrants to rural areas, 
non-exposed migrants, and non-migrants. 
 

The study makes four key contributions to knowledge on climate-induced migration. First, 
the analyses provide new evidence about the effects of climate variability on migration to urban 
areas. Although there are many implicit (and sometimes explicit) assumptions about the 
distribution of climate-related impacts on migration between urban and rural areas, few studies 
disaggregate origins and (or) destinations by urban and rural status (exceptions discussed above). 
Second, the regression analyses account for potential heterogeneity of climate effects across 
sub-populations. These analyses account for the systematic differences in vulnerability to climate 
variability that have been suggested in previous studies (Mueller et al. 2020; Thiede et al. 2016), 
as well as the possibility that groups may have different propensities to move to urban (or rural) 
areas in response to environmental stressors. Third, the study identifies and describes discrete 
groups of climate-exposed migrants, providing insights into the characteristics of such 
populations in urban and rural areas. Most previous studies have aimed to measure the marginal 
effects of climate exposures on migration probabilities, giving much less attention to the 
identification and characterization of climate-affected migrants. Fourth and most broadly, the 
conclusions from this study are based on the application of consistent methods to harmonized 
census microdata, which produce comparable estimates across a large number of countries. This 
effort builds on previous papers that have variously measured climate effects across multiple 
countries in Latin America (Thiede et al. 2016), Africa (Mueller et al. 2020), and Asia (Thiede et 
al. 2022), combining data from across world regions and placing renewed emphasis on migration 
between and within urban and rural areas. 
 

Analytic strategy 
 
Data 
Migration and other demographic characteristics are measured using harmonized census and 
inter-censal survey microdata (henceforth census data for brevity) from 23 countries, which are 
accessed using the Integrated Public Use Microdata Series-International (IPUMS-I) database 
(Minnesota Population Center 2020). Among the census data available from IPUMS-I at the time 
of analysis, the analytic sample is restricted to samples that meet the following criteria: (a) are 
collected through censuses or inter-censal surveys9; (b) include a migration question with a five-
year lookback (i.e., is the place of current residence different than five years ago?); (c) include 
georeferenced data on place of residence at both the baseline of the migration interval and time 
of enumeration; and (d) are sourced from developing countries for which at least two censuses 
meet the first three criteria.10 The dataset is further restricted to include individuals who were of 
working age (15-64 years) at the start of the migration interval (i.e., five years prior to the census). 

 
9 The high-frequency labor force surveys provided by IPUMS-I are excluded. 
10 One country (Haiti) and a limited number of provinces within countries are excluded from the analysis because 

they lack variability in the outcome variable. 
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The decision focuses the analysis on populations who are likely to be most affected by the 
economic effects of climate variability and excludes individuals in ages when migration is rare 
(Bernard et al. 2014). After these restrictions, the analytic sample includes 142,947,304 
observations from 23 countries, which are representative of a target population of more than 3.2 
billion individuals. The geographic distribution of the sample is described in Table 1. 
 

Table 1. Distribution of sample by country 

Country Sample size Proportion of sample 

Argentina 2,161,151 0.0151 

Bolivia 621,225 0.0043 

Botswana 78,488 0.0005 

Brazil 12,747,205 0.0892 

Chile 1,477,180 0.0103 

China 63,847,023 0.4466 

Colombia 2,299,765 0.0161 

Costa Rica 284,892 0.0020 

Dominican Republic 330,137 0.0023 

Ecuador 815,432 0.0057 

Guatemala 579,548 0.0041 

Honduras 238,020 0.0017 

Indonesia 33,615,645 0.2352 

Malaysia 844,390 0.0059 

Mexico 11,062,865 0.0774 

Mozambique 632,230 0.0044 

Nepal 1,035,603 0.0072 

Nicaragua 218,940 0.0015 

Paraguay 277,847 0.0019 

Philippines 3,753,010 0.0263 

Senegal 474,832 0.0033 

Vietnam 5,329,672 0.0373 

Uruguay 222,205 0.0016 

Total 142,947,304   

Notes: the analytic sample is representative of target population of 3.245 billion 

individuals. 

 
Climate exposures are measured using data from the University of East Anglia’s Climatic 

Research Unit Time Series (CRU). The CRU dataset provides 0.5°-resolution climate estimates 
based on the interpolation of data from more than 4,000 weather stations globally and has been 
widely used in previous population-environment research (Gray & Wise 2016; Weinreb et al. 
2020). Total precipitation and average temperatures are extracted for all months between 1961 
and 2020 as spatial means for first-level sub-national units (henceforth “provinces” for brevity) 
in the sample. These climate data are matched to the demographic files using individuals’ place 
of residence at the start of the migration interval, which was also measured at the province level. 
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Measures 
The dependent variable is migration status. Individuals are defined as migrants if their province 
of residence at the time of the census differs from their province of residence at the start of the 
migration interval, five years prior. This approach captures inter-province moves of significant 
duration (i.e., 2.5 years on average if migration rates are inter-annually stable), while excluding 
moves that are of shorter duration and distance (e.g., temporary or intra-metropolitan moves); 
international moves are also excluded by default (see limitations section). I further differentiate 
between migrants to urban and rural areas, and in some analyses also differentiate between 
urban and rural places of origins. Provinces are classified as urban and rural according to 
population density, using a country-specific relative measure. Provinces with population 
densities in the top third of all province-year observations for a given country are classified as 
urban and all other provinces are classified as rural. This country-specific approach is appropriate 
since large regional differences in urbanization make the use of absolute thresholds difficult (i.e., 
some countries would have zero urban provinces). It is important to note, however, that this 
approach still differs considerably from the definitions of urban and rural used by countries’ 
statistical agencies. 
 
 The focal predictor variables are temperature and precipitation variability. These 
measures are operationalized as anomalies, measured at the province level during the five-year 
migration interval. Anomalies capture the deviation of temperature and precipitation during a 
given period from the long-term mean in a location (in this case, at the province scale), 
standardized over the historical standard deviation (i.e., they can be interpreted as z-scores). The 
historical means and standard deviations are calculated from the full 1961-2020 climate history 
used in the analysis.11 Anomalies are a preferred measure of climate exposures in the population-
environment literature since they capture locally meaningful deviations from normal, should be 
uncorrelated with baseline climate, and empirically have been stronger predictors of 
demographic outcomes than unstandardized measures of temperature and precipitation (Gray 
& Wise 2016; Thiede et al. 2022).12 Parts of the analysis require the use of categories that 
distinguish between populations that are exposed and non-exposed to temperature and 
precipitation shocks. In these cases, individuals are defined as being affected by temperature and 
precipitation shocks if they were respectively exposed to temperatures and precipitation levels 
more than one standard deviation above or below average during the migration interval.13 
 

 
11 The historical means and standard deviations are calculated for all consecutive 60-month periods in the climate 

history (e.g., running means and standard deviations). 
12 The ability for anomalies to capture locally meaningful deviations from normal is particularly important for 

analyses of spatially extensive datasets, in which the absolute thresholds that define above- or below-normal 
temperatures and precipitation are likely to vary. Alternatives, such as the number of days with temperatures above 
or below a specific threshold, may provide additional information in some contexts but lack relevance in others (e.g., 
where 90˚ F temperatures do not occur, but 80˚ F temperatures have meaningful impacts). 
13 For reference, and to assess potential non-linearities, I also fit a regression model that uses such categorical 

climate variables as focal predictors. Consistent with a reviewer comment, these supplemental analyses also include 
a model that uses the absolute temperature and precipitation anomalies as focal predictors. All supplemental 
analyses are reported in the appendix. 
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 As described below, all analyses account for individuals’ age (in years), sex, and primary 
school attainment, and the urban (rural) status of their province of residence (at migration 
interval baseline). Statistical profiles of climate-affected migrants and comparison populations 
also include measures of household size and household head sex (i.e., residence in a female-
headed household). Supplemental analyses among populations with requisite data describe 
individuals’ marital status, labor force status, disability status, and membership in indigenous 
groups.  
 
Methods 
The first set of analyses measure the effects of climate variability on migration to urban areas, 
also drawing comparisons with migration to rural areas. These estimates are generated by fitting 
multinomial logistic regression models of migration status, differentiating between migrants to 
urban and rural destinations (i.e., a three-category outcome with non-migrants as the reference 
group). Migration is modeled as a function of climate exposures (defined above), controlling for 
individuals’ age, sex, primary school attainment, and rural (urban) status of baseline province of 
residence. The models also include sample fixed effects, which account for systematic differences 
between each of the samples (i.e., censuses and inter-censal surveys) from which the data are 
drawn. In practice, census fixed effects help to control for potential spatial and temporal 
confounders, including flexibly controlling for time trends within countries and accounting for 
common between-country differences.14 Standard errors are adjusted for clustering within 
provinces, which is the level at which the focal predictor variables are measured. 
  

The analyses begin with a model that measures overall climate effects, across the entire 
sample (Model 1). The second set of analyses evaluate whether and how climate effects on 
migration to urban (and rural) areas vary by individuals’ age, sex, educational attainment, and 
urban (rural) status of their province of residence. The goal is to identify the sub-populations 
whose migration behavior is particularly sensitive (or insensitive) to climate variability and, 
relatedly, the groups that are most likely to experience climate-induced changes in migration to 
urban areas. Differences are assessed by fitting multinomial regression models that include 
interactions between the temperature and precipitation terms and, respectively, individuals’ age, 
sex, and primary school attainment, and the urban (rural) status of their province of residence 
(Models 2-5). This part of the analysis is then extended by exploring potential regional 
heterogeneity in climate effects. Here, three separate models are fit for each of the major world 
regions included in the data—Africa, Asia, and Latin America and the Caribbean. 

 
 The third and final analysis develops a statistical portrait of climate-affected migrants in 
urban areas and compares their characteristics to reference populations. Specifically, a set of 
descriptive profiles describe the age, sex, educational attainment, and household size and 

 
14 A more conservative approach would include province fixed effects and separate controls for global or region-

specific time trends (see Mueller et al. (2020) and Thiede et al (2016) as examples using similar data and methods). 
However, the main models in this study could not be fit when replacing census fixed effects with province fixed 
effects and a separate time trend (i.e., they did not converge). Alternatively, I note that the current approach should 
provide more conservative estimates than a model with country fixed effects and a separate time trend, since sample 
fixed effects more-flexibly account for spatial-temporal confounders. 
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structure (i.e., sex of household head) of individuals exposed to climate shocks, as defined above. 
Comparable profiles are produced for climate-affected migrants to rural areas, non-affected 
migrants to both rural and urban areas, and non-migrants. 
 

Results 
 
Description of sample 
The analysis begins by describing key features of the analytic sample (Table 2). Overall, 3.0 
percent of individuals in the sample are classified as a migrant using the five-year migration 
question, with 1.9 percent of individuals moving to urban areas and 1.1 percent moving to rural 
areas. That is, a sizeable majority (62.7%) of migrants settle in urban destinations. There is 
considerable variation in the climatic conditions that individuals were exposed to during the 
migration intervals captured in the data. The average temperature anomaly was 0.321, with a 
standard deviation of 0.536 and a range of -1.948 to 2.248. Likewise, the average precipitation 
anomaly was 0.065, with a standard deviation of 0.815 and a range of -2.257 to 2.975. Individuals 
in the sample were exposed to the extreme conditions—at both the upper and lower ends of the 
temperature and precipitation distributions—that are expected to disrupt socioeconomic and 
environmental systems, and to change migration patterns. 
 

Table 2. Description of analytic sample 

Variable Mean SD Min Max 

Migrant = urban destination 0.0190 - 0 1 

Migrant = rural destination 0.0113 - 0 1 

     

Temperature 0.3210 0.5363 -1.9457 2.2484 

Precipitation 0.0654 0.8150 -2.2569 2.9754 

     

Age 33.4 13.1 15 64 

Sex = female 0.5014 - 0 1 

Education = primary + 0.6935 - 0 1 

Residence = urban 0.5350 - 0 1 

Year 1992.0 8.5 1965 2012 

Sample size 142,947,304 

Notes: see Table 1 for distribution of cases by country. Year is measured at migration interval baseline. 

 
 

 For reference, the demographic characteristics of the sample are also described, focusing 
on the variables included as controls in the regression model. The average age of individuals in 
the sample—which was restricted to working-age individuals aged 15 to 64 years—at the 
migration interval baseline was 33.4 (standard deviation = 13.1). Approximately 50.1 percent of 
the sample were women, 69.4 percent had a primary education or higher, and 53.5 percent 
resided in an urban province at the start of the migration interval. 
 



16 
 

Regression estimates 
The next set of analyses aim to measure the effects of temperature and precipitation variability 
on internal migration to urban and rural areas using regression methods that control for potential 
confounding factors. This part of the analysis begins by measuring overall effects across the entire 
sample (Model 1, Table 3). The results yield no evidence of temperature effects on the likelihood 
of migration to urban destinations, but do show a positive association between precipitation 
exposures and urban-bound migration (β = 0.267, relative risk ratio (RRR) = 1.306). Each standard-
deviation increase (decrease) in precipitation is associated with an approximately 30.6 percent 
increase (decrease) in the odds of migration to urban areas relative to no migration. To put this 
result into a more substantively meaningful context, predicted probabilities of migration to urban 
areas are generated across a range of precipitation exposures while holding all other variables at 
their means. The predicted probability of urban-bound migration under average precipitation 
levels is 1.2 percent. The probability of such moves decreases to just 0.7 percent when 
precipitation is two standard deviations below normal; and conversely would increase to nearly 
2.1 percent when precipitation is two standard deviations above normal. Substantively, an 
implication of these findings is that drought exposures—and the adverse downstream impacts of 
droughts—reduce migration to urban areas, rather than increasing such moves as commonly 
assumed. The regression analyses also account for migration to rural destinations. Precipitation 
exposures have much weaker effects on moves to rural areas, both statistically (p<0.10) and 
substantively (β = 0.077, RRR = 1.080). 

Table 3. Multinomial logistic regression models of inter-province migration to urban and rural destinations 

  Model 1 

 Urban destination  Rural destination 

Variable β   SE   β   SE 

Temperature -0.0044  0.1881  -0.1915  0.1367 

Precipitation 0.2672 *** 0.0671  0.0770 † 0.0415 

        

Age -0.0549 *** 0.0052  -0.0427 *** 0.0025 

Sex = female -0.0893 *** 0.0218  -0.2190 *** 0.0188 

Education = primary + 0.5700 *** 0.0684  0.2768 *** 0.0381 

Residence = urban -0.1073  0.1423  -0.3627 *** 0.0822 

        

Sample fixed effects Yes 

        

Joint test, all climate 16.09***  7.77* 

        

Pseudo R2 0.0693 

Sample size 142,947,304 

†p<0.10, *p<0.05, **p<0.01, ***p<0 .001 

Notes: standard errors clustered at the province level. Temperature and precipitation are measured as anomalies during 

the 5-year migration interval. Sample fixed effects indicate the census or survey that the observation was drawn from. 

 
Given differences in vulnerability to climatic stressors and the use of migration as an 

adaptation strategy, the relationship between climate anomalies and migration odds may vary 
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systematically across sub-populations. Therefore, an additional series of models that allow 
climate effects to vary by individuals’ age, sex, educational attainment, and baseline residence in 
an urban or rural community are fit (Tables 4-5). The first of these models tests for differences 
by age (Model 2, Table 4). The strong precipitation effects on migration to urban areas identified 
above are not significantly moderated by age. While we did not identify a significant temperature 
effect on migration to urban areas in the overall model, we find evidence of variation in such 
effects by age (as indicated by a statistically significant temperature-by-age interaction term). 
However, further calculations show that the marginal effects of temperature exposures remain 
non-significant across the entire range of ages in our data. We also find evidence of age-
temperature interactions when modeling moves to rural destinations. The marginal effect of 
temperature remains statistically non-significant for all but the oldest individuals in our sample, 
and for these individuals the effects are not substantively meaningful. For the example, the 
marginal effect of temperature (holding all other variables at their means) is just -0.001 for 
individuals aged 64 years at the start of the migration interval. Age does not significantly 
moderate precipitation effects on moves to rural destinations, which were only marginally 
significant in the main model. 

 
 The next model tests for differences in climate effects by sex (Model 3, Table 4). The 
positive association between precipitation exposures and migration to urban areas does not vary 
significantly between men and women. Both groups experience drought-induced reductions in 
migration to urban areas. The point estimates of temperature effects for men and women do 
vary significantly, but these differences lack substantive importance since marginal temperature 
effects are not statistically or practically meaningful for either group. We observe a similar 
dynamic for estimated temperature effects on migration to rural areas, where between-sex 
differences are statistically significant but the marginal climate effects for each group are not. 
Finally, we find significant differences in precipitation effects on migration to rural areas, which 
are non-significant among men but significant and positive among women (β = 0.091, RRR = 
1.096). Each standard deviation increase (decrease) in migration is associated with an 
approximately 9.6 percent increase (decrease) in the odds of moves to rural areas among women. 
 

The next interaction model allows temperature and precipitation effects to vary by 
individuals’ educational attainment (Model 4, Table 5). Precipitation effects among individuals 
with less than a primary school education are statistically significant and positive (β = 0.118, RRR 
= 1.126). Each standard deviation increase (decrease) in precipitation is associated with an 
appropriately 12.6 percent increase (decrease) in the likelihood of migrating to an urban area. 
Precipitation effects operate in the same direction among better-educated individuals (with a 
primary school education or more) but are significantly stronger (β = 0.289, RRR = 1.335). Among 
this population, a standard deviation increase (decrease) in precipitation is associated with a 33.5 
percent increase (decrease) in the probability of moving to an urban destination. The results also 
show significant between-group differences in temperature effects on moves to urban areas, but 
the marginal effects of temperature exposures for both groups are statistically non-significant. 
There is no evidence of substantively meaningful climate effects, and educational differences 
therein, on migration to rural destination
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Table 4. Multinomial logistic regression models of inter-province migration to urban and rural destinations 

 Model 2  Model 3 

 Urban destination  Rural destination  Urban destination  Rural destination 

Variable β   SE   β   SE   β   SE   β   SE 

Temperature 0.1844  0.2266  -0.0408  0.1478  -0.0275  0.1866  -0.2196  0.1377 

Precipitation 0.3587 ** 0.1186  0.0917  0.0625  0.2566 *** 0.0651  0.0651  0.0416 

Temperature × age -0.0073 * 0.0034  -0.0055 *** 0.0013         

Precipitation × age -0.0035  0.0033  -0.0005  0.0016         

Temperature × sex = female         0.0480 ** 0.0147  0.0618 *** 0.0120 

Precipitation × sex = female         0.0223  0.0137  0.0263 * 0.0126 

Temperature × education = primary+                

Precipitation × education = primary+                

Temperature × residence = urban                

Precipitation × residence = urban                

                

Age -0.0516 *** 0.0049  -0.0411 *** 0.0025  -0.0549 *** 0.0052  -0.0428 *** 0.0025 

Sex = female -0.0890 *** 0.0218  -0.2186 *** 0.0188  -0.1117 *** 0.0247  -0.2394 *** 0.0185 

Education = primary + 0.5764 *** 0.0677  0.2807 *** 0.0383  0.5688 *** 0.0683  0.2750 *** 0.0380 

Residence = urban -0.1072  0.1423  -0.3624 *** 0.0821  -0.1072  0.1423  -0.3626 *** 0.0822 

                

Sample fixed effects Yes  Yes 

                

Joint test, all climate 9.59**  2.88  15.96***  7.12* 

Joint test, all climate interactions 5.28†  19.62***  12.41**  36.77*** 

                

Pseudo R2 0.0695  0.0694 

Sample size 142,947,304  142,947,304 

†p<0.10, *p<0.05, **p<0.01, ***p<0 .001 

Notes: standard errors clustered at the province level. Temperature and precipitation are measured as anomalies during the 5-year migration interval. Sample fixed effects indicate the census or survey that the 

observation was drawn from. 
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 The fourth interaction model accounts for differences in climate effects between 
residents of rural and urban provinces at migration interval baseline (Model 5, Table 5). As such, 
this approach allows for the explicit measurement of temperature and precipitation effects on 
rural-urban, rural-rural, urban-urban, and urban-rural moves. Contrary to common assumptions, 
we find that precipitation effects on migration to urban areas do not vary between rural and 
urban places of origin. Substantively, this result means that droughts are likely to reduce both 
rural-urban and urban-urban migration flows. While the point estimates of climate effects on 
migration to rural areas do not vary significantly, we note that the marginal effects of 
precipitation are significant and positive (β = 0.132, RRR = 1.142) among individuals in urban but 
not rural provinces. The implication is that all but rural-rural migration is influenced by 
precipitation exposures. 
 
 The final component of the main regression analysis explores regional heterogeneity in 
climate effects (Table 6) by fitting region-specific models for Africa (Model 6), Asia (Model 7) and 
Latin America and the Caribbean (Model 8). In Africa, temperature is a stronger predictor of 
migration to urban areas than precipitation, which has a non-significant association with such 
moves. Exposure to high temperatures in the region is associated with large reductions in 
migration to urban areas (β = -2.411, RRR = 0.090). Point estimates suggest that a one standard 
deviation increase in temperatures is associated with a large, 91.0 percent reduction in the 
likelihood of migration to urban areas. Temperature exposures are also negatively associated 
with migration to rural areas in Africa. The point estimate on this temperature coefficient is also 
large in magnitude (β = -1.189, RRR = 0.305) but is less precise (p<0.10) and does not meet the 
standard threshold for statistical significance. In Asia, migration to urban areas is driven by 
precipitation exposures (β = 0.338, RRR = 1.402). Temperature exposures are only marginally 
associated with migration to rural areas (β = -0.389, RRR = 0.678, p<0.10). Finally, in Latin America 
and the Caribbean, results show that temperature exposures are significantly and positively 
associated with migration to urban areas (β = 0.365, RRR = 1.440); while migration to rural areas 
is positively associated with precipitation (β = 0.113, RRR = 1.119).
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Table 5. Multinomial logistic regression models of inter-province migration to urban and rural destinations 

 Model 4  Model 5 

 Urban destination  Rural destination  Urban destination  Rural destination 

Variable β   SE   β   SE   β   SE   β   SE 

Temperature 0.2487  0.1763  -0.1514  0.1320  -0.0076  0.2045  -0.1880  0.1461 

Precipitation 0.1183 * 0.0558  0.0750 † 0.0448  0.2847 *** 0.0764  0.0525  0.0450 

Temperature × age                

Precipitation × age                

Temperature × sex = female                

Precipitation × sex = female                

Temperature × education = primary+ -0.3077 *** 0.0778  -0.0554  0.0425         

Precipitation × education = primary+ 0.1704 *** 0.0429  0.0018  0.0366         

Temperature × residence = urban         0.0150  0.1048  -0.0331  0.0636 

Precipitation × residence = urban         -0.0489  0.0979  0.0800  0.0610 

                

Age -0.0550 *** 0.0052  -0.0427 *** 0.0025  -0.0549 *** 0.0052  -0.0427 *** 0.0025 

Sex = female -0.0886 *** 0.0218  -0.2186 *** 0.0188  -0.0894 *** 0.0218  -0.2189 *** 0.0188 

Education = primary + 0.6172 *** 0.0627  0.2864 *** 0.0364  0.5699 *** 0.0684  0.2767 *** 0.0383 

Residence = urban -0.1009  0.1413  -0.3620 *** 0.0819  -0.1046  0.1401  -0.3598 *** 0.0794 

                

Sample fixed effects Yes  Yes 

                

Joint test, all climate 5.63†  5.39†  14.20***  4.49 

Joint test, all climate interactions 24.73***  1.83  0.27  2.02 

                

Pseudo R2 0.0697  0.0694 

Sample size 142,947,304  142,947,304 

†p<0.10, *p<0.05, **p<0.01, ***p<0 .001 

Notes: standard errors clustered at the province level. Temperature and precipitation are measured as anomalies during the 5-year migration interval. Sample 

fixed effects indicate the census or survey that the observation was drawn from. 
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Table 6. Multinomial logistic regression models of inter-province migration to urban and rural destinations, by region 

  Model 6: Africa  Model 7: Asia  Model 8: Latin America & Caribbean 

 Urban destination  Rural destination  Urban destination  Rural destination  Urban destination  Rural destination 

Variable β   SE   β   SE   β   SE   β   SE   β   SE   β   SE 

Temperature -2.4110 *** 0.6515  -1.1886 † 0.6336  -0.2943  0.2967  -0.3888 † 0.2075  0.3646 ** 0.1257  0.0535  0.1237 

Precipitation 0.0151  0.2014  -0.0867  0.1302  0.3381 *** 0.0826  0.0458  0.0588  -0.0238  0.0468  0.1125 ** 0.0428 

                        

Controls Yes  Yes  Yes 

Sample fixed effects Yes  Yes  Yes 

                        

Joint test, all 

climate 13.73**  4.05  21.32***  5.84†  8.78*  6.93* 

                        

Pseudo R2 0.1022  0.0803  0.0396 

Sample size 1,185,550   108,425,343   33,336,411 

†p<0.10, *p<0.05, **p<0.01, ***p<0 .001 

Notes: standard errors clustered at the province level. Temperature and precipitation are measured as anomalies during the 5-year migration interval. Sample fixed effects indicate the census or survey that the 

observation was drawn from. 
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 Finally, several additional sets of analyses are conducted to supplement the main 
regression estimates (included in the appendix). First, the overall regression model (i.e., Model 
1) is re-fit but allowing temperature and precipitation effects to interact (Model A1, Table A1) 
and allowing for non-linearities in temperature and precipitation effects via the inclusion of 
quadratic terms (Model A2, Table A1). The results suggest that temperature and precipitation 
may interact such that the migration-reducing effects of drought are amplified when they occur 
at the same time as periods of excessive heat; and that the precipitation effects reported in the 
main analysis may be driven by strong negative effects of precipitation deficits (versus positive 
effects of excessive precipitation). As another approach for examining non-linearities, a 
supplemental model using measures of absolute temperature and precipitation anomalies is fit 
(Model A3, Table A2). In a more restrictive approach than Model A2, this model assumes the 
effects of positive and negative anomalies will be identical. The results indicate that any 
deviations from normal temperature and precipitation are associated with reduced migration. 
This result is in some ways consistent with that of Model A2 but given the stronger assumptions 
should be interpreted with caution. 
 

The final supplemental model uses a different outcome variable, which differentiates 
between moves to capital city regions—defined as a province that contains the capital city—and 
all other destinations (Model A4, Table A3). Interestingly, the results show that temperatures 
(but not precipitation) are associated with migration to capital cities (β = 0.363, RRR = 1.438). 
Precipitation (but not temperatures) is a significant predictor of migration to all other 
destinations (β = 0.213, RRR = 1.237). The implication is that the strong precipitation effect 
detected in the main analyses is likely to be driven by moves to non-capital cities.  
 
Characterizing climate-affected migrations in urban areas 
 The final step in the main analysis is to generate statistical profiles of climate-affected migrants 
to urban areas and comparison populations, including climate-affected migrants to rural areas, 
non-affected migrants to both rural and urban areas, and both climate-affected and non-affected 
non-migrants (Table 7). The focus is on seven sociodemographic variables that can be measured 
consistently across the samples in the dataset. 
 
 This analysis begins by describing the age profile of climate-affected migrants to urban 
areas and comparison groups. With a mean age of 25.9 years, climate-affected migrants to urban 
areas have the youngest average age of all groups—although non-affected migrants to urban 
areas are only marginally older (mean age = 26.1 years). Migrants to rural areas—both climate-
affected (mean age = 27.3 years) and those not affected by climate anomalies (mean age = 27.0 
years)—have the next highest ages, while non-migrants are much older on average. Both climate-
affected and non-affected non-migrant populations have an average age of 33.6 years. 
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Table 7. Demographic profiles of climate-affected migrants and reference populations 

 Climate-affected urban migrants  Climate-affected rural migrants  Climate-affected non-migrants 

Variable Mean SD Min Max  Mean SD Min Max  Mean SD Min Max 

Age 25.94 10.46 15 64  27.34 10.93 15 64  33.62 13.00 15 64 

Sex = female 0.4864 - 0 1  0.4625 - 0 1  0.5033 - 0 1 

Education = primary + 0.8681 - 0 1  0.7567 - 0 1  0.6947 - 0 1 

Baseline residence = urban 0.4437 - 0 1  0.4229 - 0 1  0.4693 - 0 1 

Household size 2.6857 2.1254 1 94  2.7608 2.2667 1 92  2.7832 1.4245 1 96 

Household head               

Female 0.1663 - 0 1  0.1505 - 0 1  0.1300 - 0 1 

Not reported 0.1753 - 0 1  0.0903 - 0 1  0.0422 - 0 1 

               

Sample size 998,391  844,733  50,538,377 

 Non-affected urban migrants  Non-affected rural migrants  Non-affected non-migrants 

Variable Mean SD Min Max  Mean SD Min Max  Mean SD Min Max 

Age 26.05 10.44 15 64  27.03 10.64 15 64  33.61 13.14 15 64 

Sex = female 0.4748 - 0 1  0.4451 - 0 1  0.5020 - 0 1 

Education = primary + 0.8434 - 0 1  0.7726 - 0 1  0.6872 - 0 1 

Baseline residence = urban 0.5658 - 0 1  0.4554 - 0 1  0.5593 - 0 1 

Household size 2.6911 2.4370 1 94  2.7825 2.6157 1 96  2.7675 1.4994 1 96 

Household head               

Female 0.1491 - 0 1  0.1322 - 0 1  0.1279 - 0 1 

Not reported 0.1721 - 0 1  0.1053 - 0 1  0.0458 - 0 1 

               

Sample size 1,822,004  1,402,544  87,341,245 

Notes: climate-affected persons are individuals exposed to temperatures and (or) precipitation anomalies greater than |1|. 
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Migrants of all types, as defined here, are disproportionately male vis-à-vis the non-
migrant population. While more than half of the non-migrant groups (both climate-affected and 
non-affected) are female, between 44.5 and 48.6 percent of each migrant population is female 
(i.e., fairly large majorities of migrants are males). Of all four groups, it is notable that climate-
affected migrants to urban (48.6% female) and rural (46.3% female) destinations have slightly 
higher representation of women than their non-affected counterparts (47.5% of non-affected 
urban migrants are female; 44.5% of non-affected rural migrants are female). The implication is 
that women may be slightly more likely to be represented among climate-affected migrant 
populations than within migration streams associated with other factors. 
 
 The educational attainment of migrants is considered next. Nearly 87 percent (86.8%) of 
climate-affected urban migrants have a primary education or more, which is much higher than 
climate-affected rural migrants (75.6%) and non-migrants (69.5%). However, it is only 2.5 
percentage points higher than the share of non-affected migrants to urban areas with a primary 
school education or more (84.3%). Still, the implication is that climate-affected migrants to cities 
are either not selected or positively selected on education vis-à-vis non-affected urban migrants. 
Non-affected rural migrants and non-affected non-migrants have lower educational attainment, 
with primary school completion rates of 77.3 percent and 68.7 percent, respectively.  
 
 Climate-affected migrants to urban areas are disproportionally likely to come from rural 
provinces. Only 44.4 percent of this group originated in an urban province, which is much lower 
than the 56.6 percent of non-affected migrants to urban areas. Only among climate-affected 
migrants to rural areas was the share from urban origins lower (42.3%), followed by non-affected 
rural migrants (45.5%) and climate-affected non-migrants (46.9%). More than 55 percent (55.9%) 
of non-affected non-migrants lived in urban provinces. 
 
 The final two comparisons in this main descriptive analysis focus on household 
characteristics—household size and female headship. The average household size of climate-
affected urban migrants is the lowest of all groups, but within a rounding error of the average for 
non-affected urban migrants (i.e., both average 2.7). This similarity—and the consistency of 
average household size among all other groups (around 2.8)—suggests that the slightly smaller 
household size is characteristic of urban-bound migrants in general rather than climate-affected 
populations in particular. Finally, I note that the share of individuals living in female-headed 
households is highest among climate-affected urban migrants (16.6%), followed by climate-
affected rural migrants (15.1%), and non-affected urban migrants (14.9%). Approximately 13 
percent of individuals in the three other comparison groups live in female-headed households. 
 
 These main descriptive profiles are supplemented with additional analyses of other 
variables that were only available for some of the censuses and surveys used to construct the 
analytic sample. I include these results in full in Table A3 of the appendix, which presents the 
descriptive statistics and indicates the number of samples and countries for which valid data were 
obtained. Here, I highlight four key conclusions. First, climate-affected migrants to urban areas 
are more likely to be single and never married than non-migrants and migrants to rural areas. 
However, the share single (33.1%) is comparable to that among non-affected urban migrants 
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(32.1%). Second, climate-affected migrants in urban areas have a low employment rate (64.1%) 
compared to all other groups. Similarly affected rural migrants (65.2%) and non-affected 
migrants in urban areas (66.0%) have the most comparable employment rates, which range 
between 68.6 percent and 72.8 percent among all other groups. Third, the rate of disability is 
lowest among climate-affected urban migrants (1.8%), with somewhat higher rates (between 
2.2% and 2.4%) among other migrant populations and rates between 2.8 and 3.4 percent among 
non-migrant populations. Fourth and finally, approximately 8.4 percent of urban-bound climate-
affected migrants identify as indigenous. This share is much higher than any other comparison 
group, among which rates vary between 4.8 and 5.9 percent.   

 
Discussion and conclusion 

 
This study leverages “big microdata” from around the developing world (Ruggles 2014) to 
measure the effects of climate variability on migration to urban areas, to characterize the 
population of climate-affected migrants living in urban areas, and to draw comparisons with 
migration to rural areas. The regression analyses and descriptive statistical profiles support at 
least four main substantive claims. First, climatic variability is affecting migration to urban areas 
across the developing world. Overall estimates across the entire 23-country sample show a 
strong positive association between precipitation exposures and migration to urban areas, with 
the implication that drought exposures will significantly reduce migration flows to urban areas. 
Importantly, this result runs contrary to the common assumption that climatic stressors will 
displace populations to cities—and as such it adds further evidence to the hypothesis that 
climatic changes may trap vulnerable populations in place. Second, climate variability does not 
have a significant overall effect on migration to rural areas. Movement between rural provinces, 
or from urban to rural provinces, is seemingly driven by factors not associated with recent climate 
exposures.  
 

Third, the results yield limited evidence of heterogeneity in climate effects on migration 
to urban areas across social and demographic groups. The most substantively important finding 
is that better-educated individuals are more sensitive to precipitation exposures than less-
educated individuals, and as such are less likely to migrate to urban areas after droughts. This 
dynamic potentially reduces the pool of highly-skilled migrants in urban areas. The results also 
yield notable heterogeneity in effects across world regions. Fourth and finally, the statistical 
profile of climate-affected migrant populations in urban areas and comparison groups suggests 
that climate-exposed urban migrants are largely similar to other streams of urban migrants or, in 
some respects (i.e., education), may even be positively selected. This finding is notable since such 
migrants are more likely than other groups to originate from rural provinces, which tend to be 
disadvantaged. These descriptive results, within the context of the regression estimates, should 
ease concerns that climatic stressors will displace marginalized populations, with poor chances 
of adaptation, into cities. Climate-affected migrants in cities are instead remarkably similar to 
other migrants. 
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 The findings from this study contribute to the scholarly literature on climate-related 
changes in migration by giving explicit attention to climate-induced changes in migration to urban 
(and rural) areas, comparing climate effects on rural-urban migration with other types of moves 
(e.g., urban-urban), testing for social and spatial differences in climate effects using harmonized 
data and methods, and attempting to describe a discrete population of climate-affected 
migrants. They also raise important considerations for policymakers and practitioners working in 
the areas of climate adaptation, social protection, and cognate fields. Here, three important 
conclusions merit attention. First, climate stressors (in this case, drought) may reduce rather than 
increase migration to cities. Such evidence should alleviate—or, at least, reduce—concerns that 
climate change will lead to large population displacements into cities. In fact, this evidence may 
instead raise the opposite challenge—that cities will be deprived of migrants, who often play a 
dynamic role in local economies. A second and related finding is that climate-affected migrants 
appear similar to other streams of migrants to urban areas, and in some respects (i.e., education) 
may be more positively selected than other groups. The results of this analysis suggest that 
climate-affected migrants are likely to be relatively well positioned to adapt and integrate, at 
least in terms of the basic characteristics captured in these census data. Third and finally, there 
remains a need for nuanced interpretation and continued data collection and analysis. The 
exploratory analysis of regional variation in climate effects, for example, shows differences in the 
direction and magnitude of climate effects from region to region. Policymakers and practitioners 
should therefore be cautious to interpret global evidence through the lens of the particular 
context they are working in. 
 
 With these contributions and conclusions in mind, the study is still characterized by 
limitations that should be addressed in future research. First, the analysis only captures intra-
national moves between provinces that are of sufficient duration to be captured using a five-year 
lookback period. As such, it does not capture moves within provinces and may miss a substantial 
share of short-duration moves (e.g., individuals who left their original province of residence 
within the migration Interval but returned prior to the census). It also excludes international 
migrants (i.e., individuals who moved into or out of the country of enumeration during the 
migration interval). The implications of these exclusions are not easily predicted or characterized 
in general terms. The role of each type of migration in households’ adaptation strategies is likely 
to vary systematically. For example, international migration may serve more of an adaptation 
function in some contexts, or for some types of households, than others (Riosmena et al. 2018; 
Sedova & Kalkuhl 2020). 
 
 Second, the study relies exclusively on census data. While such data have many strengths 
for these purposes, they may also be characterized by relevant biases. Specifically, censuses may 
undercount vulnerable populations (e.g., individuals living in informal urban settlements) who 
may also be uniquely affected by the impacts of climate variability. Consider a hypothetical 
example in which economically vulnerable populations in rural areas are displaced to informal 
settlements in cities, where they are systematically undercounted in a census. In this case, 
census-based estimates will produce downwardly-biased estimates of climate effects on rural-
urban migration. The extent to which such biases occur is an open and very important question, 
which should be investigated in future studies using alternative data. 
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Third, the study focuses on the effects of climate variability, as operationalized by five-

year temperature and precipitation anomalies. This approach is merited given the geographic 
heterogeneity within the sample and the relatively long intervals used to measure migration, 
which necessitates the use of globally relevant measures. However, it may miss effects that more 
fine-grained, context-specific measures would have detected (e.g., measuring heat exposure as 
the number of days above a locally relevant absolute temperature threshold). The climate 
anomalies used here may likewise not fully capture acute shocks (e.g., months with extreme heat 
or precipitation) and (or) natural disasters (e.g., floods) that are masked by five-year averages or 
are only weakly correlated with temperature or precipitation (e.g., flood exposures may not be 
correlated with local rainfall given the topography and hydrology of a given region, Chen et al. 
2017).15 This limitation highlights to need to complement large-scale, regional or global analyses 
with more geographically limited studies that can uncover critical nuances (albeit with some costs 
to generalizability). 

 
Fourth and relatedly, the study measures climate exposures in the place of origin. While 

this approach is consistent with much of the micro-level evidence on this topic to date (Gray & 
Wise 2016; Mueller et al. 2020), it makes strong assumptions about the characteristics of possible 
destinations that affected populations consider and, relatedly, does not measure how climatic 
conditions in possible destinations influence migration decisions. The limited attention to “pull-
side” conditions in migration decision-making in this paper, and the climate-migration literature 
more broadly, represents an important gap that should be addressed using new analytic 
approaches (see Entwisle et al. 2020 as an example). 

 
Finally, the analysis draws on a spatially extensive dataset, which enhances the 

generalizability of the estimates but is characterized by at least two limitations. First, the study 
prioritized the construction of an extensive dataset over one that included more information, 
which would have been available for a much smaller number of countries. This decision limited 
the number of variables that could be included as possible controls, moderators, or mediators, 
restricting the scope of the substantive questions that could be answered. For example, richer 
panel data that included questions about income, food prices and consumption, and health 
would allow for tests of hypothesized mechanisms. Of course, such approaches would need to 
be geographically limited and therefore lack the generalizability of the current estimates. Second, 
despite the spatial extent of the dataset, the necessary data on migration are still missing for 
many countries around the world. The availability of requisite census data may reflect countries’ 
resources (e.g., data collection and dissemination capacity), which may be correlated with 
vulnerability to climate shocks and potentially bias estimates.  

 
15 Even standardized measures of monthly extremes are poorly suited for this analysis given spatial variation in the 

intra-annual distribution of precipitation and the inability to control for such spatial differences (e.g., via province 

fixed effects). For example, consider a case in which one defines negative precipitation shocks as when precipitation 

is more than one standard deviation below the monthly mean. If location A typically experiences little-to-no rainfall 

for 3 months of the year, it will not be “at risk” of negative precipitation shocks those months (i.e., because 

precipitation cannot fall below 0). If location B typically experiences non-zero rainfall all 12 months of the year, it 

will therefore by systematically more at risk of negative precipitation shocks. 
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 Despite these limitations, the current study provides new insights into the effects of 
climate variability on migration to urban and rural areas across the developing world. Within the 
context of the large literature on climate and migration, the limited attention to urban- and rural-
specific migration streams has been surprising. These findings, and the limitations identified 
above, should spur new research on this topic, which is essential to develop appropriate policy 
interventions as global climate change continues to unfold. 
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Appendix 
 

Table A1. Multinomial logistic regression models of inter-province migration to urban and rural destinations 

  Model A1  Model A2 

 Urban destination  Rural destination  Urban destination  Rural destination 

Variable β   SE   β   SE   β   SE   β   SE 

Temperature -0.0104  0.1876  -0.1878  0.1354  0.2267  0.1626  -0.1640  0.1242 

Temperature2         -0.3709 ** 0.1116  -0.0678  0.0777 

Precipitation 0.2036 ** 0.0587  0.0450  0.0414  0.2759 *** 0.0660  0.0736 † 0.0414 

Precipitation2         -0.1544 ** 0.0489  0.0075  0.0408 

Temperature × precipitation 0.1469 * 0.0675  0.0937 * 0.0469         

                

Controls                

Sample fixed effects                

                

Joint test, temperature -  -  35.33***  2.13 

Joint test, precipitation -  -  13.80**  3.16 

Joint test, all climate 16.67***  10.18**  39.57***  8.70† 

                

Pseudo R2 0.0695  0.0704 

Sample size 142,947,304  142,974,304 

†p<0.10, *p<0.05, **p<0.01, ***p<0 .001 

Notes: standard errors clustered at the province level. Temperature and precipitation are measured as anomalies during the 5-year migration 

interval.  

Sample fixed effects indicate the census or survey that the observation was drawn from. 
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Table A2. Multinomial logistic regression models of inter-province migration to urban and 

rural destinations 

  Model A3 

 Urban destination  Rural destination 

Variable β   SE   β   SE 

Temperature |z| 

-

0.2116 * 0.1067  0.0097  0.0752 

Precipitation |z| 

-

0.4923 * 0.2192  

-

0.3393 * 0.1700 

        

Controls Yes 

Sample fixed effects Yes 

        

Joint test, all climate 11.65**  5.64† 

        

Pseudo R2 0.0687 

Sample size 142,947,304 

†p<0.10, *p<0.05, **p<0.01, ***p<0 .001 

Notes: standard errors clustered at the province level. Temperature and precipitation are 

measured as absolute anomalies during the 5-year migration interval. Sample fixed effects 

indicate the census or survey that the observation was drawn from. 
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Table A3. Multinomial logistic regression model of inter-province migration to capital cities 

and other destinations 

  Model A4 

 Capital city destination  Other destination 

Variable β   SE   β   SE 

Temperature 0.3633 ** 0.1177  

-

0.1288  0.1647 

Precipitation 0.0027  0.0469  0.2131 

**

* 0.0558 

        

Controls Yes 

Sample fixed effects Yes 

        

Joint test, all climate 9.56**  17.01*** 

        

Pseudo R2 0.0737 

Sample size 142,947,304 

†p<0.10, *p<0.05, **p<0.01, ***p<0 .001 

Notes: standard errors clustered at the province level. Temperature and precipitation are 

measured as anomalies during the 5-year migration interval. Sample fixed effects indicate the 

census or survey that the observation was drawn from. 
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Table A4. Demographic profiles of climate-affected migrants and reference populations, select variables among valid samples 

 

Sample size Number of countries Number of samples 

Climate-affected urban migrants  Climate-affected rural migrants  Climate-affected non-migrants 

Variable Mean SD Min Max   Mean SD Min Max   Mean SD Min Max 

Marital status 136,234,085 22 73               

Single, never married    0.3307 - 0 1  0.2446 - 0 1  0.1497 - 0 1 

Married or in union    0.5804 - 0 1  0.6464 - 0 1  0.7589 - 0 1 

Other    0.0889 - 0 1  0.1090 - 0 1  0.0914 - 0 1 

Labor force status 109,313,748 19 68               

Employed    0.6409     0.6518     0.6940    

Unemployed    0.0547 - 0 1  0.0550 - 0 1  0.0512 - 0 1 

Inactive    0.3002 - 0 1  0.2903 - 0 1  0.2526 - 0 1 

Unknown    0.0042 - 0 1  0.0029 - 0 1  0.0022 - 0 1 

Disability status = disabled 92,074,535 7 35 0.0175 - 0 1  0.0236 - 0 1  0.0283 - 0 1 

Indigenous = yes 51,950,472 10 20 0.0835 - 0 1  0.0572 - 0 1  0.0587 - 0 1 

                  

  

Sample size Number of countries Number of samples 

Non-affected urban migrants   Non-affected rural migrants   Non-affected non-migrants 

Variable Mean SD Min Max   Mean SD Min Max   Mean SD Min Max 

Marital status 136,234,085 22 73               

Single, never married    0.3206 - 0 1  0.2445 - 0 1  0.1495 - 0 1 

Married or in union    0.6128 - 0 1  0.6754 - 0 1  0.7600 - 0 1 

Other    0.0666 - 0 1  0.0801 - 0 1  0.0905 - 0 1 

Labor force status 109,313,748 19 68               

Employed    0.6602     0.6860     0.7275    

Unemployed    0.0516 - 0 1  0.0393 - 0 1  0.0342 - 0 1 

Inactive    0.2864 - 0 1  0.2727 - 0 1  0.2372 - 0 1 

Unknown    0.0018 - 0 1  0.0020 - 0 1  0.0011 - 0 1 

Disability status = disabled 92,074,535 7 35 0.0218 - 0 1  0.0240 - 0 1  0.0342 - 0 1 

Indigenous = yes 51,950,472 10 20 0.0484 - 0 1  0.0563 - 0 1  0.0516 - 0 1 

Notes: climate-affected persons are individuals exposed to temperatures and (or) precipitation anomalies greater than |1|. Labor force statistics exclude individuals outside of universe of valid samples. 

 

 

 


